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Abstract. The mobility of two interacting particles in a random potential is studied, using the sensitivity
of their levels to a change of boundary conditions. The delocalization in Hilbert space induced by the
interaction of the two particle Fock states is shown to decrease the mobility in metals and to increase it
in insulators. In contrast to the single particle case, the spectral rigidity is not directly related to the level
curvature. Therefore, another curvature of topological origin is introduced, which defines the energy scale
below which the spectrum has the universal Wigner-Dyson rigidity.

PACS. 72.15.-v Electronic conduction in metals and alloys – 73.20.-r Surface and interface electron states

The interplay between disorder and interactions is a
central problem in quantum transport. Recently, it was
proposed [1] that interactions could favor delocalization
in disordered insulators of large (one particle) localiza-
tion length L1. This was first understood for the simple
case of two interacting particles (TIP) in a random po-
tential, where a fraction of the TIP-states do have [1] a
localization length L2 larger than L1. This result is sur-
prising since in disordered metals, repulsive interactions
are expected to reduce the conductivity [2] and in dis-
ordered insulators, the singularity of the density of states
which leads eventually to a gap, also reduces the quantum
transport. This delocalization effect can be understood
by considering the problem in the Fock space, where the
many-body states are delocalized by the interaction. This
is a very general idea that we use here in the restricted
framework of the two-body problem. By Fock states, we
simply mean the 2 × 2 Slater determinants built out of
the one particle states, assuming spinless fermions. These
are eigenstates in the absence of interaction, and form a
basis of the TIP-Hilbert space. This terminology of Fock
states might not be the correct one for this two body prob-
lem, but we use it both for brievety and because it will
become appropriate for the general N-body problem [3].
We consider bare particles, but the extension to dressed
quasi-particles created from the Fermi vacuum is straight-
forward [4]. In the presence of interactions, character-
ized by the parameter U , the Fock states are broadened
[5,6], and the TIP eigenstates have a finite projection over
(typically) g2 ≡ Γ/∆e

2 nearby in energy Fock states. Here,
Γ is the broadening, characterizing the local density of
states in the Fock basis (assuming a Breit Wigner form)
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and ∆e
2 the spacing between the Fock states effectively

coupled by U . This delocalization in the Fock basis char-
acterizes both metals and insulators. But the delocaliza-
tion in the real space occurs only for insulators, since the
Fock states are themselves localized in real space.

In order to understand this delocalization, a scaling
approach of the TIP-problem was proposed [4] as a gener-
alization of the Thouless block scaling picture. For system
sizes L1 < L < L2, a certain conductance g2(L) = Γ/∆e

2

was defined and assumed to obey the usual Ohm’s law (i.e.
the one particle scaling theory of localization) in order to
recover the delocalization by interactions. In that work, as
in an effective σ model formulation developed [7] later, L1

was implicitly assumed to be the smallest resolved scale.
Therefore, the meaning of g2 is unclear for L� L1 i.e. in
the metallic regime.

Independently, an analysis [6] of the statistical proper-
ties of the TIP-spectrum in the metallic regime has shown
that the universal Wigner Dyson rigidity occurs for g2 =
Γ/∆e

2 consecutive levels, provided g2 ≥ 1. In the absence
of interaction, the spectrum is essentially of the Poisson
type for energies ∆2 ≤ E ≤ ∆1 where ∆1 is the one par-
ticle mean level spacing. For the one particle spectrum,
one knows that Wigner-Dyson rigidity occurs for g1 con-
secutive levels, where g1 is the dimensionless conductance
of the non interacting electron gas. For the TIP-case, g2

plays the role of g1, as far as the spectral fluctuations
are concerned. We will show in this letter that, though
the TIP-spectrum becomes more rigid for stronger interac-
tions, the transport in real space is reduced when L < L1.

To that purpose, we describe the transport in terms
of the sensitivity of the levels to a change of boundary
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conditions [8]. This is equivalent to closing the system as
a ring of length L pierced by a dimensionless Aharonovh-
Bohm magnetic flux φ = Φ/Φ0 where Φ0 = hc/e. We
define the two-particle level curvature C2(E) at energy E
as the zero flux curvature of the integrated two-particle
density of states N(E, φ):

C2(E) =
∂2

∂φ2
N(E, φ)

∣∣
φ=0
· (1)

An equivalent expression was shown [9] to describe the
d.c residual dimensionless conductance g1 of the non in-
teracting electron gas under very general conditions set by
the random matrix theory. It is therefore natural to try to
extend this description to the case of interacting particles.

The main results of this letter are as follows. Assuming
a Breit-Wigner form for the local density of states [5,6],
we obtain for the two particle curvature C2 the expression

C2(E) = C2
(0)(E)−

g2

∆1
I

(
E

Γ
,
B

Γ

)
(2)

where C2
(0)(E) is the value of the curvature in the ab-

sence of interactions, B the kinetic energy scale (band-
width) and I (E/Γ,B/Γ ) ≈ g1∆1/B for g1 � 1 and of or-
der −∆1 for g1 � 1. Since C2(E) fluctuates from sample
to sample, let us make more precise what is the meaning
of equation (2). For the one particle case, the curvature
C1(E) is characterized, in the metallic regime, by a very
broad distribution (generalized Lorentzian) [10]. Its mean
value over the statistical ensemble is zero at the center of
the band (E = 0) so that g1 is typically given by the
width of the distribution, defined for instance by the well
behaved quantity 〈|C1(E)|〉. C2(E) should be understood
in a similar way i.e. as a typical value characterizing the
width of a distribution, and not as a mean value. Prelim-
inary numerical results [11] display a similar behavior for
the TIP spectrum for a large enough U .

In the metallic regime, the typical values of C2
(0)(E)

and I are given respectively by g1∆1/∆
e
2 and g1∆1/B so

that the total curvature is a decreasing function of the
interaction through the term ∝ g2g1 as expected in a good
metal. In the insulating regime (g1 � 1), C2

(0)(E) is zero
up to exponentially small terms while the typical value
of I is proportional to −∆1 so that C2 increases with
g2 in agreement with the delocalization effect described
above [1].

Although the physical meaning of C2 is clear, this
quantity, unlike the case of non interacting electrons in
a random potential, can hardly be considered to be rele-
vant for a scaling theory of the interacting system. From
the random matrix theory point of view, the spectrum of
the interacting system displays a very unusual behaviour.
Usually, the curvatures generated by varying some sys-
tem parameter also set the energy scale below which the
Wigner Dyson rigidity of the spectrum is observed. This
is a central point in the scaling theory of localization. The
fact that g2 increases with the interaction in the metal-
lic regime discards C2 as a candidate for scaling. In other

words, we are looking for another “curvature” which would
be proportional to g2 (i.e. zero for the non interacting sys-
tem).

Without interaction (U = 0), the TIP-Hamiltonian is
separable into two identical one particle Hamiltonians, i.e.

H = h1 + h2 with hi =
p2
i

2M + V (xi) and where V (x) is
the random potential. In other words, the two particles
ring can be thought of as two independent one particle
rings. For this argument to be valid, we assume either
discernable particles, or indiscernable particles with addi-
tional quantum numbers. This leads us to associate dis-
tinct Aharonov-Bohm fluxes φ1 and φ2 to each ring. The
separability of the TIP-Hamiltonian is broken by the in-
teraction U(x1− x2). A variation of φ1 will then induce a
current in the second ring characterized by a mutual in-
ductance. One can extend this point of view to the case
where a current is driven due to the interactions between
two systems, each of them characterized by a well defined
gauge field (two SNS junctions for instance). Similarly,
this two particle problem in 1d can be thought of as a
single particle problem in 2d, where by closing the 2d
system on itself as a torus, one can again introduce two
Aharonov-Bohm fluxes φ1 and φ2. Without interaction,
the 2d character of this equivalent one particle model is
misleading since the Hamiltonian is separable. But with
interactions, we have a genuine 2d system and a topology
similar to those considered in the description of the inte-
ger quantum Hall effect [12]. We thus define the spectral
two-form:

C = Im
∑
A

〈
∂A

∂φ1

∣∣∣∣ ∂A∂φ2

〉
(3)

where |A〉 are TIP-eigenstates of energies EA. Using the
structure of the TIP-states in the Fock basis, we obtain:

C(φ1, φ2) = g2V (φ1, φ2) (4)

where V (φ1, φ2) is the Berry connexion whose flux
through a closed surface in the flux space is a geomet-
ric phase [13]. This relation constitutes the second result
of this work. The remainder of this letter is devoted to
establish and discuss them.

We consider two particles of mass M interacting
through a short range attractive or repulsive potential
U(x1 − x2) and submitted to a random potential V (x).
Defining,

L2(E) =
M

2

∑
AA′

δ(E −EA)

∣∣〈A∣∣P ∣∣A′〉∣∣2
EA −E′A

(5)

where P = p1+p2 is the total momentum of the two parti-
cles, the curvature C2(E) defined by equation (1) rewrites:

C2(E) = B
[∑
A

δ(E −EA) + L2(E)
]
. (6)
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We define the one particle states by (
∣∣α〉, εα) and the Fock

states by (
∣∣αβ〉, εαβ ≡ εα+ εβ). To calculate C2(E) for the

interacting and disordered case, we expand the TIP-states∣∣A〉 on the Fock states
∣∣αβ〉:∣∣A〉 =
∑
αβ

CAαβ
∣∣αβ〉 (7)

so that L2(E) contains a product of four complex ampli-
tudes CAαβ . To proceed further, we assume as is usual for
disordered metals, that only those trajectories which do
correspond to time reversed amplitudes contribute to the
sum in L2(E). Therefore, we keep only terms of the form∣∣CαβA∣∣2∣∣Cα′β′A′∣∣2, i.e. those obtained for α = γ, β = ε
and α′ = γ′, β′ = ε′. Combinations of the type
δββ′〈α′

∣∣p1

∣∣α〉δαα′〈β′∣∣p2

∣∣β〉 cancel since 〈α
∣∣p1

∣∣α〉 = 0 for
zero magnetic flux. Then, L2(E) rewrites:

L2(E) =
M

8

∑
AA′

δ(E −EA)
1

EA −EA′

×
∑
αβ

∑
α′β′

∣∣CαβA∣∣2∣∣Cα′β′A′∣∣2δββ′∣∣〈α′∣∣p1

∣∣α〉∣∣2.
In the previous expression appears the density of states
ραβ(E) =

∑
A δ(E − EA)|CAαβ |

2 For the TIP-problem it

was shown [5,6] that it is well described by the Breit-
Wigner form:

ραβ(E) = ρBW(E − εαβ)

=
1

2π

Γ

(E − Γ0 − εαβ)2 + Γ 2/4
· (8)

The shift Γ0 is negligible for weak enough U and the
width Γ can be estimated using the Fermi Golden rule:
Γ = 2π〈H2

od〉/∆
e
2 where 〈H2

od〉 is the variance of the non
diagonal matrix elements of H in the Fock basis. 1/∆e

2 is
the effective density of Fock states coupled by the two-
body interaction. For a lattice model with N sites it is
assumed that Hod are independent normal variables char-
acterized by a variance of the order of U2/N3. This es-
timate comes from the assumption that the one particle
wavefunctions are ergodic, as implied by the O(N) in-
variance in random matrix theory. This corresponds to
the zero mode contribution of a diffusion process (higher
modes have been considered [3]). Within the zero-mode
approximation, ∆e

2 = ∆2 = ∆2
1/B, for g1 � 1. Using

these approximations we obtain,

L2(E) =
πM

4

∑
αβ

ρBW(E − εαβ)
∑
α′

∣∣〈α′∣∣p1

∣∣α〉∣∣2
εα − εα′

−
π

2
Γ
∑
αβ

ρBW(E − εαβ)
∑
α′β′

ρBW(E − εα′β′)

×δββ′

∣∣〈α′∣∣p1

∣∣α〉∣∣2
E − εα′β′

·

The first term in L2(E) contributes to C2
(0)(E), i.e. to

the two-particle curvature in the absence of interactions.
The second part is proportional to the interactions so that
L2(E) rewrites:

L2(E) = L2
(0)(E) −

π

2

Γ

∆3
1

I (9)

which defines both L2
(0) and I. The sign of L2(E) may

fluctuate from sample to sample but not the relative sign
between the two terms of the rhs of equation (10). The
total two-particle curvature is:

C2(E) = C2
(0)(E)−

π

2

BΓ

∆3
1

I. (10)

Using ∆2 = ∆2
1/B and g2 = Γ/∆2, we obtain the equa-

tion (2) for C2(E). As discussed in the introduction, the
mean value of the curvature C2 is zero. We are then in-
terested in either the typical value (when it exists) or
in the width of the distribution. For the non interact-
ing case (Γ = 0), the two-particle energies are given by
EA = εαβ and the typical value of the curvature [9]
∂2EA(φ)
∂φ2

∣∣
φ=0
∝ g1∆1 so that C2

(0) ∝ g1∆1

∆2
. In the same

way, replacing
∑
α by ∆−1

1

∫ B
−B dx, the typical width of I

defined by its absolute value is:

Ityp =
g1∆

2
1

B
I(0,∞). (11)

The constant I(0,∞) is given by the integral

∫ ∞
−∞

dx

∫ ∞
−∞

dy
1

(x+ y)2 + 1

∫ ∞
−∞

dz
1

(z + y)2 + 1

1

|z + y|
(12)

where Ityp is evaluated at the center of the band E = 0
and in the limit B/Γ →∞ where the bandwidth is much
larger than Γ . In this metallic limit g1 � 1, we obtain for
the typical two particle curvature:

C2
(typ)'

g1∆1

∆2
− g2

g1∆1

B
· (13)

Because of interactions, C2 is reduced by a small correc-
tion. This agrees with numerical results [14] obtained for
N spinless fermions. Since C2(E) can be interpreted as
a measure of the transport along the system, we recover
that repulsive interactions decrease the conductivity as ex-
pected when g1 � 1. It could have been anticipated from
the behavior of the TIP-energy levels EA(φ). In the ab-
sence of interaction (U = Γ = 0), the TIP-spectrum for
g1 � 1 has many level crossings. This results from the
superposition of two independent spectra (although each
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of them follows the Wigner Dyson statistics). A finite in-
teraction U removes these level crossings and therefore
reduces their curvature. In contrast, when g1 � 1, level
crossings are already suppressed by one particle localiza-
tion and a finite interaction may enhance the flux depen-
dence of EA(φ), as numerically observed [15].

The relation (11) has been obtained by assuming a uni-
form broadening of all the Fock states. This is no longer
correct when g1 ≤ 1, for scales L1 < L < L2. There,
among the N Fock states, only a fraction NU (∼ LL1 in
1d) is broadened by the interaction. The remaining part
N0 ≈ N − NU has a negligible broadening for a short
range interaction since they do correspond to one particle
states localized far away from each other. Then, in order
to calculate C2(E) for L1 < L < L2, we split the sum in
equation (5) into two sums corresponding respectively to
N0 TIP-states close to a single Fock state and NU TIP-
states broadened over g2 Fock states. The first sum corre-
sponds to states

∣∣A0〉 which are localized within L1 � L.
In the Hilbert space of these states, it is always possible
to build a well defined position operator [16] X̂ even for
a ring geometry. Therefore, for these states the f-sum rule

is fulfilled i.e. ∂2EA(φ)
∂φ2

∣∣
φ=0

= 0 and therefore C2
(0)(E)

is zero up to terms proportional to exp−(L/L1). Then,
in the expression of C2(E) remains only the second class
of states for which the previous argument does not hold
since they are coupled by the interaction U and extended
over a scale L2 > L. These states will still contribute to
C2(E) through the second term in the rhs of equation (10).
Since g1 ≈ 0 (f-sum rule), the analog of equation (6) for

one particle yields for M/2
∣∣〈α′∣∣p1

∣∣α〉∣∣2 a typical value of
order ∆1. Using this in equation (11) and making the re-
placements ∆2 → ∆e

2 ≡ B/NU and Γ → Γ (∆e
2) given by

the Golden rule with a density 1/∆e
2, we obtain for the NU

interaction-assisted states a typical curvature C2 '
Γ (∆e

2)
∆e

2

when L1 < L < L2, i.e. a mobility increased by the in-
teraction. For L > L2 this contribution decays itself as
exp−(L/L2). This is nothing but the result of a decima-
tion of the spectrum where all the N0 TIP-states not cou-
pled by the interaction do disappear. In this regime, the
typical curvature C2 coincides with the TIP-conductance
g2(L) defined by Imry.

Since C2 is proportional to g2 only in the localized
regime i.e. when the one particle mobility is suppressed
by localization, it cannot be considered as an appropriate
scaling parameter for the TIP-localization transition. For
L � L1 ( metallic regime), the number g2 of consecutive
TIP-levels exhibiting the universal Wigner-Dyson rigidity
increases with U , but remains much smaller than C2 which
is essentially dominated by the one particle kinetic part
g1∆1/∆2. In order to get rid of this one particle contri-
bution, we are led to introduce the response to two inde-
pendent fluxes φ1 and φ2. The simplest generalization of a
curvature which does not contain the one particle kinetic
part is the crossed product (two-form) defined by equa-
tion (3). For U = 0, it is straightforward to show that

C = 0, since
∣∣A〉 =

∣∣αβ〉 and
∑
αβ〈

∂α
∂φ1

∣∣α〉〈β∣∣ ∂β∂φ2
〉 is real.

This is not true anymore for the interacting case. There,

using equation (7) we have:

C = Im
∑
A

∑
αβγε

CA∗αβC
A
γε

〈
∂α

∂φ1

∣∣∣∣γ〉〈β∣∣∣∣ ∂ε∂φ2

〉
, (14)

where CAαβ ≈ −iΓ ((EA − εαβ) − iΓ )−1 (this results from

the Lippman-Schwinger equation). The approximation
previously considered for the CAαβ i.e. keeping only the
combinations α = γ and β = ε, for the calculation of
C2, gives a real term which does not contribute. How-
ever, by taking α = ε and β = γ, and approximating∑
A Γ ((EA − εαβ))

2 + Γ 2)−1 by ∆−1
2 , we obtain:

C =
Γ

∆2
Im
∑
αβ

〈
α

∣∣∣∣ ∂H∂φ1

∣∣∣∣β〉〈β∣∣∣∣ ∂H∂φ2

∣∣∣∣α〉
(εα − εβ)2

(15)

where we recognize the expression of the two-form connex-
ion V (φ1, φ2) (see Eq. (4)) whose integral over a closed
surface in the flux space is a geometric phase which is
independent of the interaction.

Similar curvatures of topological origin were consid-
ered in various contexts. To describe the Mott transition
in the one dimensional repulsive U ≥ 0 Hubbard model,
Shastry and Sutherland [17] introduced two “fluxes” cou-
pled respectively to the charge and spin degrees of free-
dom, for a finite density of fermions (no disorder). The
two flux curvature measures in this case the difference be-
tween the charge and spin susceptibilities. In the context
of semiclassical physics, Robbins and Berry [18] did con-
sider the semiclassical approximation of a spectral two-
form similar to those given by equation (3) for situations
where the classical limit corresponds either to integrable
or chaotic systems. In the integrable case, the semiclassi-
cal behaviour is equivalent to the Hannay two-form [19].
For non integrable systems, physical realizations of such
a two-form is a debated question. The curvature C we in-
troduced for the TIP-problem might be such an example.
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